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Among anti-submarine warfare (ASW) target motion analysis

(TMA) algorithms for mobile platforms, passive bearings only track-

ing is the most basic segment. The present state-of-the-art of

s s A St i S

: ' tracking by this method is not satisfactory [1]. None of the existing
extended Kalman filter algorithms yield both accurate tracks and an
accurate solution quality indicator. Generally, these algorithms |
perform no better than much simpler manually controlled algorithms.
Several approaches to the use of the recursive filtering theory are
discussed in references [1,2]. The approaches can all be refer-

enced to a basic text book Extended Kalman Filters. Differences

among the algorithms correspond to choice of coordinate systems,

whether one aligns the linearization point of the nonlinear measurement

to the line of sight or not, whether or not one limits artificial range
collapse, and whether or not one uses some other form of divergence

control. The difficulties are quite well documented in reference [1].

The severity of the undesired behavior differs from algorithm

PTTIT R,

to algorithm. This difference depends on the nature of the algorithm

and the accuracy of the measurements, the rate of the measurements,
the range and data rate, and the geometric configuration of OWN ship

i ; and target ship. However, the fact that none of the algorithms generally

give satisfactory performance leaves one to question whether or not

the difficulties lie with the nature of the extended Kalman filter

which is being applied to this problem. It is the purpose of this paper

il NN
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to point out the difference in performance between a simple extended
Kalman filter and an optimal Bayesian filter in pictorial form. And,
to show rcasons why extended Kalinan filters do not perform satis-
factorily.

b The actual implementation of the Bayesian optimal filter is a
Gaussian sum approach documented in references [2, 4, 5). How-
ever, the purpose of this paper is not to demonstrate the utility of
the Gaussian sum approach in nonlinear filtering, but instead to show .

the difference between an optimal Bayesian filter implemented in any

manner whatsoever and a linearized or extended Kalman filter. It is
hoped that the following description will give the reader insight into |
the nature of both the optimal Bayesian filter and the approximation

nature inherent in any extended Kalman filter.
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2. PASSIVE BEARINGS ONLY TRACKING EXAMPLE

A simple two-dimensional version of the bearings only track-
ing problem is considered. The state vector is chosen to be two-
dimensional (latitude, longitude) for simplicity. The extention to
the case of four state variables, including bearings and speed in-

s formation is straight forward. Again, for simplicity, OWN ship
is assumed to be traveling at a constant speed around a circular
path. Any trajectory for OWN ships motion could have been used.

These simplifications have been introduced because the purpose
of this paper is to illustrate the nature of the o'ptimal Bayesian approach
to this problem and the effects of various linearization approximations,
not to solve the problem in the most expeditious manner.

Once an engineer sees the nature of an "optimal" solution to a
nonlinear filtering problem, he can often develop a simpler, but
adeguate suboptimal (often a linearization type) filter.

The state vector propagates according to the linear plant model.

. T W L

; where the two-dimensional state represents latitude and longitude

coordinates.

e
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and the state is observed by the scalar nonlinear measurement

e
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function:
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where:

h (x,) = tan” " [(y, - sin B)/(x, = cos B)]

pk = po + p(k'l)

where ﬁo and p are given constants. The statistics of the a priori

random variables _xo, vk, and Ek which are white independent

Gaussian random variables are:

b :
= = = 5
E(v) =0  E(w) ( 0) E(x,) = &, _
2 T a\lzl 9 &
F_I(vk vj): o 6kj E(\fk wj) = . “Z 6kj

Bl ~ 8 je - 2 1=

The above model arises in connection with the tracking geometry of

Figure 1, where the target T at the position defined as _)_g;(r = (:H(, yk)
is undergoing a random walk in the two dimensional state space. The

observer S is passively measuring the line of sight a as it travels in

Figure 1. Geometrical Definition of Vector Tracking Example
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a deterministic orbit around the unit circle. It is important to note
that when B is equal to zero the target is unobservable and the

filtering problem becomes degenerate.

The problem to be considered here is how to obtain the best
possible estimate of the state X of the system (1-2) based on all

data up to time k, zk. * ;

*The collection of data up to time k {z 1’ Zor e zk} is defined as

2 K




3. BAYESIAN RECURSION RELATIONS

Since the state vector X, is a random variable, in the prob-
abilistic context of this diSCUs_s-ion, the a posteriori density p(ﬁkl zk)
provides the most complete description possible of X This
density is determined recursively from the Bayesian recursion

- relations given below. The filtering density is given first and the

FUR——

prediction density is next.

; A, P(x.klzk) = Ckp(xklzk-l)p(zklxk) ” 8
P("kl £ =Ln P(’ﬁ(-llzk-l)p(’ﬁc"ﬁ(-l)d’i-l . v

where the normalizing constant ¢, is given by

k
k-1, _ k-1 -
/e, & P(zklz ) —Ln P(xklz )p(zklxk)dﬁ( , 10 ;

and the initial condition for (8) is

-1 At
= - 11
plx_l27") Ap(x ) = Nly -x_,P,)

The densities p(zklxk) and p(xklﬁ-l) are determined from (1)
o . and (2), and the a priori densities p(vk) and p(wk ).

Pz, |%) = N(z, -hy (%), R)) 12%

plx I )= Neg-x _;.Q) 13%

x*

1
IAI I/Zﬂn/Z

N(x-x,A) A exp { T\ (x-;‘:)}




4. THE EXTENDED KALMAN FILTER

The nonlinear filtering problem is solved when the density ;
p(xklzk) can be obtained for all k. However, except when equation
2 is linear and the a priori distributions are Gaussian, it is
generally impossible to determine p(xkl zk) in a closed form using
(8)-(11). In the linear Gaussian case, the relations describing the condi-
ditional mean and covariance of p(xkl zk) are the well-known Kalman
filter equations (6). The difficulties associated with the explicit
determination of the a posteriori density have led to the development
of approximate procedures for estimating the state of nonlinear
stochastic systems. The most commonly used approximation
involves the assumptions that the a priori distributions are Gaussian
and that the nonlinear system can be linearized relative to latest
estimate yielding the "extended' Kalman filter which has seen wide-

spread application to nonlinear systems.

The extended Kalman filter has performed well in many
applications but there are numerous examples in which unsatis-
factory results have been obtained. This has spurred the develop-
ment of other procedures. Most of these either implicitly or
explicitly, retain the assumption that p(xkl zk) is Gaussian and
essentially provide a means for modifying the mean and covariance
of the density. However, the Gaussian assumption greatly reduces
the generality or richness of possible a posteriori densities by throwing
out all possibility of more realistic multimodal densities.

Starting at stage 0 and linearizing about a point :—Lk in state
space and dropping all but the first order terms, we can solve the

Bayesian recursion relations to find:

@ = H(—ﬁ() P;( HT(_%() + R, 14
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K, = P, H ()0, 15
;‘s< = ;ﬁ’< +K, (2, - hgi)) 16

seey U
P, =(I-K H{x ) P, 17
’
P =B 19y, 18
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The various versions of the extended Kalman filter are simply dif-

ferent choices of xk. The most common text book choice is
~2

,Lk ’

H(x, ) = Oh(x)/Ox|x

Iterated extended Kalman filters require processing the data
through equations (14), (15), and (16) two or more times while only up-
dating %( ,» starting with ;k equal to ;le . If the filter performs
in a reasonable manner this iteration will move X toward a point

x* such that

z, = h(x*) 20

which is ''near" the original point ;{( in some sense. The difficulty
with linearization about a point that does not satisfy equation (20) can ,
be seen from the following simple example. |

o
Consider a case where the predicted state vector %, 1s
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and the measurement cquation is of the form:
= .1 % )2 tv
z) = hk(—ﬁ() s Y =1 e k 21
P(v,) = N(v,, .1) 22
For this measurement function:
' =N 1 e 1 2
Pigle,, v b= Mg - b -3 ) 1) 3

Using the linearization procedure of the extended Kalman filter and

linearizing about ;LI(' i.e., (0, 0) we have:

Bhk(O. 0) Bbk(O. 0)
hk(o, 0) + 3%, + ayk Yk

L
hk (xk, Yk)

or

0.1 Yi _ 24

hll: (% s yk)

and using this to replace hk in the measurement density the density

used by the Kalman filter to represent equation (23) is:

PraL (Z )% Vi) = Nizg - . 1%, . 1) ais

The true function and this usual approximation to it are shown in

Figures 2a and 2b, respectively for the case when z_ is taken equal

k

to one. The fact that the nonlinearity is quite large with respect to

the linear
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term is born out by the fact that the lincarization about the value
of states predicted before the kth measurement leads to a very
poor measurement density function approximation and thus to a
very poor a posteriori density function approximation.

In many cases it is preferable if the function h  can

k
be linearized about a point when:

P 7 = 2
B e Rl o -
This region is described by the equation:
1 ( )2 =0 27
b LS T

with .z, = L.

Which is essentizlly a U shaped region extending to infinity in two
directions. This region is shown for a limited space in Figure 2z as
the U shaped ridge on the true measuiement density.

Consider the iteration procedure which picks out values
closest to the previous expected value or mean of the state ;4( and

satisfying (27). Note that all values of and such that:
g = Y

Nyt = vt \[Zk gl =

x (y )=y -.05¢% ‘lzk +.0025 - .05y, 29

satisfy equation (27). Using this and replating the value appearing on

the right hand side of these equations by the previous mean four




points are found:

3 -.os+\[£;1?‘6625‘ 0

4 -.05_\/2;;5‘.66'2?‘ 0

e A —

Figure 3. Points Satisfying Equaiion (27)

In linearizing the nonlinearity about each of these four points the
four resulting functions reduce to two giving the two approximation
to p(zk'ﬁ) shown in Figure 2c¢. It is seen that this is a considerably
better approximation to the true function than that of Figure 2b, and
that it snight be improved still more by an increase of the predicted ,
variance of each of the Gaussians. It should also be noted that
iterating the linearization to its limit point will lead to the right
or left hand ridge of Figure 2c, which is considerably better than
the non-iterated case but which ignores the second ridge completely.
An alternate approach would be to require that the linearization
occur at the point nearest ;j'\ satisfying equation (26). This would
only be acceptable if the measurement data was perceived to be more

accurate than previous state information.
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5. GAUSSIAN SUM APPROACH

When the lincarization approximations discussed in the last
section are not satisfactory, one must return to the general Bayesian
recursion relations of section 3. It is generally not possible to
solve these equations analytically and some numerical or approxi-
mation technique must be used. These include the point mass method

of Bucy and Senne [7], spline approximations by Jan and Figueirado

[8] and the Gaussian sum methods by Alspach and Sorenson [2,5]. A
‘f good summary of these techniques is given in reference [9].

The Gaussian sum implementation is used here. However, the,
example is considered more important than the methods, so that
only a brief outline of the methods is given. For a more complete
description of the approach the reader is referred to the references.

The basic approach for this problem is to approximate the

measurement density p(zklﬁ() by a weighted sum of Gaussian or a

Gaussian sum.

30 term Gaussian sumn approximation to the function of Figure 2a is

p(z |x) = N(z, - hix), R) i
M
= o 31
_ INEMEN Z o e S ah, e B
7 i=1
E N
E: 32
; a =1 & = U
} x 1
’; i=1
3
t T + ‘he example in section 4, the two ridges in Figure 2c could be 2
i two term Gaussian sum approximation to the furction of Figure 2a.
'r
; A more detailed approximation would be that of Figure 2d where a

used.

13




Given a Gaussian or a Gaussian sum expression for p(ﬁ;lik- )
in cquation (8) and the Gaussian suimn approximation to p(zklﬁ() from
equation (31), one obtains an analytical Gaussian sum cxpression for
p(xklzk) from equation (8). Eguations (9) and (10) can also be solved
analytically given a Gaussian sum expression for pbﬁdl |z7). This
can be repeated to give a complete solution for the a posteriori
” density function based on any measurement realization.

The only reason this approach does not lead to a true repro-
ducing density is that the number of terms in the Gaussian sum for
p(xkl zk) is larger than the number in p(’ﬁ(-ll zk-l) if no other
approximations are introduced. This is discussed at length in
the reference where two additional approximations are introduced
and analyzed. The first is that if any term in the Gaussian sum has
a weighting di of less than € it is dropped. The second approxi-
mation is that if two terms in the sum become similar in an Ll sense

they are combined and their weighting coefficients (ai, @) are
J

combined.

14
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6. NUMERICAL RESULTS

The geometry of the situation is repeated in Figure 4a. Then

a Gaussian sum approximation is found to approximate the measurcment

ment density function p(zklﬁ() which can be written as:

p(zk,ﬁ) = const exp [-. 5(zk - h’k(fk))z/azl

The true measurement function is shown in Figure 4b where it has
been assumed that the measurement density also contains the infor-
mation that the probability is zero that the target is greater than 6
orbital radii away from the observer. This accounts for the sharp
cutoff seen in the figure. Besides this cutoff the major feature of
this function that distinguishes it from any possible one Gaussian
approximation is the cone shape. This spreads out away from the
observer showing that the farther the target is {rom the observer
the larger the possible absolute error in the targets position. For
this example the additive measurement noise has a one sigma value
of .1 radians or about 6 degrees.

When the basic extended Kalman procedure is used this
function, (hk)’ is linearized about the previous best estirnate for
state. When this linearization is performed about any point away
from the line of sight of the latest measurement (zk = 1 in this case)
very bad results can occur as shown in the example of section 4.
These equations were implemented by Bucy and Senne for this example
in reference [1] and divergence occurred. In Figure 4c the non-
linearity has been linearized about a point on the line of sight of
the measurement and at a distance of 3 units from the observer.

This gives the correct value for the variance at the point about which

15
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the lincarization 18 made, too small a value for points farther from
the observer, and too large a value for points closer to the observer.
It can also be seen from Figure 4c that there is no way to incor-
porate the cutoff data in the one Gaussian approximation in a simple
fashion. It is seen that this density function runs to infinity in both
directions in the state space plane. Figure 4d shows a 10 Gaussian
sum approxirnation to p(zklg_s() of Figure 4a which is obtained by the

methods of reference [2, 4] and in which no search was required.

This technique is applied to a dynamic example in Figure 5
where the position of the observer is shown by the cross on the unit
orbit and the cross on the density function shows the true position of

the target. The a priori estimate for the initial state was taken to

while the true value ofthe initial state (and all subsequent values

since there is no plant noise) was taken to be:

The value of B on the curve is the value ofb (k-1) where ﬁ is 10
degrees and ﬁo is -90 degrees. The r;1easurement noise here has a
one sigma value of . 0] radian or about one-half degree. The non-
gaussian a posteriori filtering density function is seen to propagate
from stage 1 to stage 9 in this figure where a measurement is taken
every 10 degrees. There were 6 terms in each Gaussian sum approxi-

mation to p(zkp_nk) in this example and the maximum number of

17
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terms in any filtering density was 117, The combination and dropping

-4
criteria were chosen to be 0 = 62 =10 .

1

Figure 6 shows the crror in the estimate of the state {from
the Gaussian sum filter of Figure 5 and the extended Kalman filter.
In addition, a divergence mcasuring parameter which should have an
average value of 2. in a2 Monte Carlo experiment is shown.

In Figure 7 the measurement one sigma value Uv was
increased to .02 radians or about one degree and a plant noise with
one sigma value of .1 was added. The statistics of the initial

estimate were changed to:

Here the propagation of the distinctly non Gaussian filtering density
from stages 1 to 6 is shown.

While these results show the ability of the Gaussian sum
approximation to calculate non Gaussian a posteriori densities in
a vector case, complete verification of these results have been
made by comparison with the considerably more expensive results
of Bucy [7] and by a Monte Carlo simulation. Plant noise was added
to the system and the initial conditions and a priori ctatistics were
changed to be consistent with the Monte Carlo results presented in

[7]. The plant and measurement noise were again white Gaussian

sequences with © : = 0.1, ﬂo = 00, B=1 rad/stage, Po =1, and
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A Monte Carlo average of 100 runs was performed filtering the same
sample paths for the Gaussian sum and extended Kalman filters. The
results are prescented in Table 1. With the plant noise added, the
increased measurement noise, and the higher rate of rotation of the
observer in its orbit, the extended Kalman filter performance with
respect to the Gaussian sum filter was greatly improved. Note that
this was not true of the more basic extended Kalman filter imple-
mented by Bucy and Senne [7], which was linearized about the latest
estimate for state J'LI( and not about the latest measurement. That
version still had severe divergence characteristics. Tazble 1 shows
the results of the filtered estimate for 10 stages. The average error,
average covariance, and average divergence parameter are presented.
It should be noted from the average covariance that the optimal

filter continues to give superior performance cven at the later

stages. The divergence parameter, which should be such that

A = E(A) = 2 for an infinite number of runs, is consistently larger

for the extended Kalman filter. The large values exhibited by this
parameter for some stages result from sample paths for which the
covariance of the extended Kalman filter becomes nearly singular. It
is worth noting that the results reported here correspond closely
with results obtained by Bucy and Senne using the method described
in [7]. This has been established in private discussions in which

both methods were applied to the same measurement realizations and

with all other assumptions identical.
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Grussian Sum Extended Eslman G:rursian Sum o
« & o @« ot a6 o' o' ) o' A A
—-0.134 0.074 0.007 0.172 0.499 —0.061 0.319 1.055  0.054 0.485 2.28 6.
-0.036  —0.073 0.091 0.069 0.161 0.072 0.238 033 0227 056 213 6.
0.055 —0.043 -0.008 0.081  0.070 0.027 0.249 0.134 0039 0.448 2.33 8.
0.090 0.003 -0.005 0.085  0.393 0.057 0.262 0.100 0.035 0.251  2.55 3
0.035 0.045  —0.044 0.000 0.145 0.087 0.263 0.155 0.078 0.257  3.12 3.
-0.047 0.046 —0.044 0.009 0.106 0.083 0.271 0.109 0.076 0302  2.76 3.
0.036 0.058 0.083 0.052  0.100 0.015 0.178 0113 0.019 0.215 2.25 2
—0.053 —-0.011 0.004 —0.019 0.095 0.041 0.211 0121 0.067 0.243 2.72 3.5
-0.036 -0.120 —0.041 —0.168  0.074 0054 0.251 0.087 0.072 0.331  2.87 11.
0.033 —0.048 —0.031 —0.073  0.030 0.045 0274 0093 0062 0.316 2.52 2
—0.012 —0.085 -0.090 -0.156  0.08] 0053 0.238 0088 0034 0286 230 2.
0.026 0.000 0.020 -0.075  0.085 0070 0327 0.121 0.095 0420 265 12
-0.132 -0.050  —p 097  -0.126  0.133 0059 0.3 0.147 0033 0245 3.02 3.
—0.089 —0.033 -0.001 —0.024  0.090 0.020 0.279 0.109 05 0.377 2.30 2.
-0.065 -0.025 —0.049 0.0015 0.077 0.027 0.257 0.091 0.(40 3.369  2.44 2.
—0.022  —0.081 —0.083 —~0.086 0.076 —0.02 0.337 0.104 0015 0370 2.8¢ 3.
23
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